92 research outputs found

    Correlations and Omori law in Spamming

    Full text link
    The most costly and annoying characteristic of the e-mail communication system is the large number of unsolicited commercial e-mails, known as spams, that are continuously received. Via the investigation of the statistical properties of the spam delivering intertimes, we show that spams delivered to a given recipient are time correlated: if the intertime between two consecutive spams is small (large), then the next spam will most probably arrive after a small (large) intertime. Spam temporal correlations are reproduced by a numerical model based on the random superposition of spam sequences, each one described by the Omori law. This and other experimental findings suggest that statistical approaches may be used to infer how spammers operate.Comment: Europhysics Letters, to appea

    Implications of autonomy for the expressiveness of policy routing

    Full text link

    Theoretical Bounds on Control-Plane Self-Monitoring in Routing Protocols

    Get PDF
    Routing protocols rely on the cooperation of nodes in the network to both forward packets and to select the forwarding routes. There have been several instances in which an entire network's routing collapsed simply because a seemingly insignificant set of nodes reported erroneous routing information to their neighbors. It may have been possible for other nodes to trigger an automated response and prevent the problem by analyzing received routing information for inconsistencies that revealed the errors. Our theoretical study seeks to understand when nodes can detect the existence of errors in the implementation of route selection elsewhere in the network through monitoring their own routing states for inconsistencies. We start by constructing a methodology, called Strong-Detection, that helps answer the question. We then apply Strong-Detection to three classes of routing protocols: distance-vector, path-vector, and link-state. For each class, we derive low-complexity, self-monitoring algorithms that use the routing state created by these routing protocols to identify any detectable anomalies. These algorithms are then used to compare and contrast the self-monitoring power these various classes of protocols possess. We also study the trade-off between their state-information complexity and ability to identify routing anomalies

    Security Verification of a Virtual Private Network over MPLS

    No full text
    • …
    corecore